FILE COPY

24 July 2008

Reference: 0079387

Mr. Robert Schelmerdeine Wayland Meadows Limited Partnership c/o Levco, Inc. 145 Rosemary Street Needham, MA 02494

Re:

Transmittal of Groundwater Analytical Data

Former Raytheon Facility

430 Boston Post Road, Wayland, Massachusetts

Dear Mr. Schelmerdeine:

On behalf of Raytheon Company (Raytheon), Environmental Resources Management (ERM) is submitting the results of groundwater sample analyses from the Former Raytheon Facility located at 430 Boston Post Road in Wayland, Massachusetts (Site). These are additional samples that are associated with the May 2008 sampling round which you had received a notification and results dated 12 June 2008. These results are submitted pursuant to 310 CMR 40.1403(10) of the Massachusetts Contingency Plan (MCP).

ERM collected groundwater samples from one well on the Site within the boundaries of your property on 25 June 2008. The sample was submitted for laboratory analysis of 1,4-dioxane. Sample analysis was conducted by Alpha Woods Hole Laboratories of Westborough, Massachusetts. This analytical data will be provided to the Massachusetts Department of Environmental Protection in the next required MCP submittal.

Raytheon has implemented the Public Involvement Process in accordance with 310 CMR 40.1405. Documents pertaining to the Site can be found at the Board of Health, the Wayland Public Library Public Involvement Plan files, or at www.ermne.com (username = raytheon, password = wayland).

Environmental Resources Management

399 Boylston Street 6th Floor Boston, MA 02116 (617) 646-7800 (617) 267-6447 (fax)

Mr. Schelmerdeine Reference: 0079387 24 July 2008 Page 2

If you have any questions or comments, please contact the undersigned at (617) 646-7800 or Louis Burkhardt, Raytheon Company, at (978) 436-8238.

Sincerely,

John C. Drobinski, P.G., LSP

Principal-in-Charge

Jason D. Flattery
Project Manager

enclosures: BWSC-123 - Notice of Environmental Sampling

cc: Louis Burkhardt, Raytheon Company

Ben Gould, CMG Environmental

PIP Repositories

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

BWSC 123

This Notice is Related to Release Tracking Number

П	
	\sim
	١ - ۲
	\circ

22408

A. The address of the disposal site related to t	this Notice	and Release Tracking Number (provided above):
Street Address: 430 Boston Post Road		
City/Town: Wayland	Zip Code:	01778
B. This notice is being provided to the following	ng party:	
1. Name: Wayland Meadows Limited Partnershi	р	
2. Street Address: 145 Rosemary Street		
City/Town: Needham Z	Zip Code:	02494
C. This notice is being given to inform its recip	pient (the p	arty listed in Section B):
1. That environmental sampling will be/ha	s been cond	ucted at property owned by the recipient of this notice.
2. Of the results of environmental sampling	g conducted	at property owned by the recipient of this notice.
the environmental sampling must be attac	hed to this r	
D. Location of the property where the environment	mental sam	pling will be/has been conducted:
Street Address: 430 Boston Post Road		
City/Town: Wayland Z	ip Code:	01778
2. MCP phase of work during which the sampling	will be/has b	peen conducted:
☐ Immediate Response Action ☐ Release Abatement Measure ☐ Utility-related Abatement Measure ☐ Phase I Initial Site Investigation ☐ Phase II Comprehensive Site Assessment	☐ Phase ☐ Phase	III Feasibility Evaluation IV Remedy Implementation Plan V/Remedy Operation Status lass C Operation, Maintenance and Monitoring (specify)
3. Description of property where sampling will be/	has been co	
residential commerical ir	ndustrial	school/playground Other
4. Description of the sampling locations and types	(e.g., soil, g	(specify) groundwater) to the extent known at the time of this notice.
Collection of groundwater samples from	n existing	monitoring wells.
E. Contact information related to the party prov Contact Name: Louis J. Burkhardt	riding this r	otice:
Street Address: 880 Technology Park Drive, MS 2	2-2124-01	
City/Town: Billerica	Zip Code:	01821
Telephone: (978) 436-8238	Email: louis	s_j_burkhardt@raytheon.com

NOTICE OF ENVIRONMENTAL SAMPLING

As required by 310 CMR 40.1403(10) of the Massachusetts Contingency Plan

MASSACHUSETTS REGULATIONS THAT REQUIRE THIS NOTICE

This notice is being provided pursuant to the Massachusetts Contingency Plan and the notification requirement at 310 CMR 40.1403(10). The Massachusetts Contingency Plan is a state regulation that specifies requirements for parties who are taking actions to address releases of chemicals (oil or hazardous material) to the environment.

THE PERSON(S) PROVIDING THIS NOTICE

This notice has been sent to you by the party who is addressing a release of oil or hazardous material to the environment at the location listed in **Section A** on the reverse side of this form. (The regulations refer to the area where the oil or hazardous material is present as the "disposal site".)

PURPOSE OF THIS NOTICE

When environmental samples are taken as part of an investigation under the Massachusetts Contingency Plan at a property on behalf of someone other than the owner of the property, the regulations require that the property owner (listed in **Section B** on the reverse side of this form) be given notice of the environmental sampling. The regulations also require that the property owner subsequently receive the analytical results following the analysis of the environmental samples.

Section C on the reverse side of this form indicates the circumstance under which you are receiving this notice at this time. If you are receiving this notice to inform you of the analytical results following the analysis of the environmental samples, you should also have received, as an attachment, a copy of analytical results. These results should indicate the number and type(s) of samples (e.g., soil, groundwater) analyzed, any chemicals identified, and the measured concentrations of those chemicals.

Section D on the reverse side of this form identifies the property where the environmental sampling will be/has been conducted, provides a description of the sampling locations within the property, and indicates the phase of work under the Massachusetts Contingency Plan regulatory process during which the samples will be/were collected.

FOR MORE INFORMATION

Information about the general process for addressing releases of oil or hazardous material under the Massachusetts Contingency Plan and related public involvement opportunities may be found at http://www.mass.gov/dep/cleanup/oview.htm. For more information regarding this notice, you may contact the party listed in **Section E** on the reverse side of this form. Information about the disposal site identified in Section A is also available in files at the Massachusetts Department of Environmental Protection. See http://mass.gov/dep/about/region/schedule.htm if you would like to make an appointment to see these files. Please reference the **Release Tracking Number** listed in the upper right hand corner on the reverse side of this form when making file review appointments.

ANALYTICAL REPORT

Lab Number: L0809876

Client: ERM-New England

399 Boylston Street

6th Floor

Boston, MA 02116

ATTN: Jason Flattery

Project Name: RAYTHEON
Project Number: 0079387

Report Date: 07/15/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:RAYTHEONLab Number:L0809876Project Number:0079387Report Date:07/15/08

Alpha Sample ID Client ID Sample Location

L0809876-01 MW-264M-20080625-01 WAYLAND, MA

Project Name:RAYTHEONLab Number:L0809876Project Number:0079387Report Date:07/15/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

Α	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
\ re	sponse to questions E and F is required for "Presumptive Certainty" status	
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	YES
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

07150819:25

Project Name:RAYTHEONLab Number:L0809876Project Number:0079387Report Date:07/15/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

Non-MCP Related Narratives

1,4-Dioxane

The analysis of 1,4-Dioxane by method 8270-SIM isotope dilution was performed at our Mansfield facility. The results are provided within this report and a copy of the laboratory report is included as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

ANALYTICA

Date: 07/15/08

ORGANICS

SEMIVOLATILES

07150819:25

Project Name: RAYTHEON Lab Number: L0809876

Project Number: 0079387 Report Date: 07/15/08

SAMPLE RESULTS

Lab ID: Date Collected: 06/25/08 12:05

Client ID: MW-264M-20080625-01 Date Received: 06/27/08
Sample Location: WAYLAND, MA Field Prep: Not Specified

Matrix: Water Extraction Method: 3510C

Anaytical Method: 1,8270 Extraction Date: 07/02/08 00:00

Analytical Date: 07/08/08 13:18

Parameter Result Qualifier Units RDL **Dilution Factor** 1,4-Dioxane by 8270 ND 500 1 1,4-Dioxane ng/l Acceptance Criteria Qualifier Surrogate % Recovery

30

15-110

Analyst:

1,4-Dioxane-d8

Project Name: RAYTHEON Lab Number: L0809876

Project Number: 0079387 Report Date: 07/15/08

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270 Extraction Method: 3510C

Analytical Date: 07/08/08 03:31 Extraction Date: 07/02/08 00:00

Analyst: TW

Parameter	Result	Qualifier	Units	RDL	
1,4-Dioxane by 8270 for sample(s):	01 Batc	n: WG329190)-1		
1,4-Dioxane	ND		ng/l	500	

Surrogate	%Recovery	Qualifier	Criteria	
1.4-Dioxane-d8	40		15-110	

Lab Control Sample Analysis Batch Quality Control

Lab Number:

L0809876

Project Number: 0079387

RAYTHEON

Project Name:

Report Date:

07/15/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
1,4-Dioxane by 8270 Associated sample(s):	01 Batch: WG329190-	2 WG329190-3			
1,4-Dioxane	92	94	40-140	2	30

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria	
1,4-Dioxane-d8	43	34	15-110	

07150819:25

Project Name:RAYTHEONLab Number:L0809876Project Number:0079387Report Date:07/15/08

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal
A Absent
D Absent
B Absent
C Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0809876-01A	Amber 1000ml unpreserved	Α	7	2.9C	Υ	Absent	SUB-MAN-1,4DIOXANE
L0809876-01B	Amber 1000ml unpreserved	Α	7	2.9C	Υ	Absent	SUB-MAN-1,4DIOXANE

Project Name:RAYTHEONLab Number:L0809876Project Number:0079387Report Date:07/15/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

Standard Qualifiers

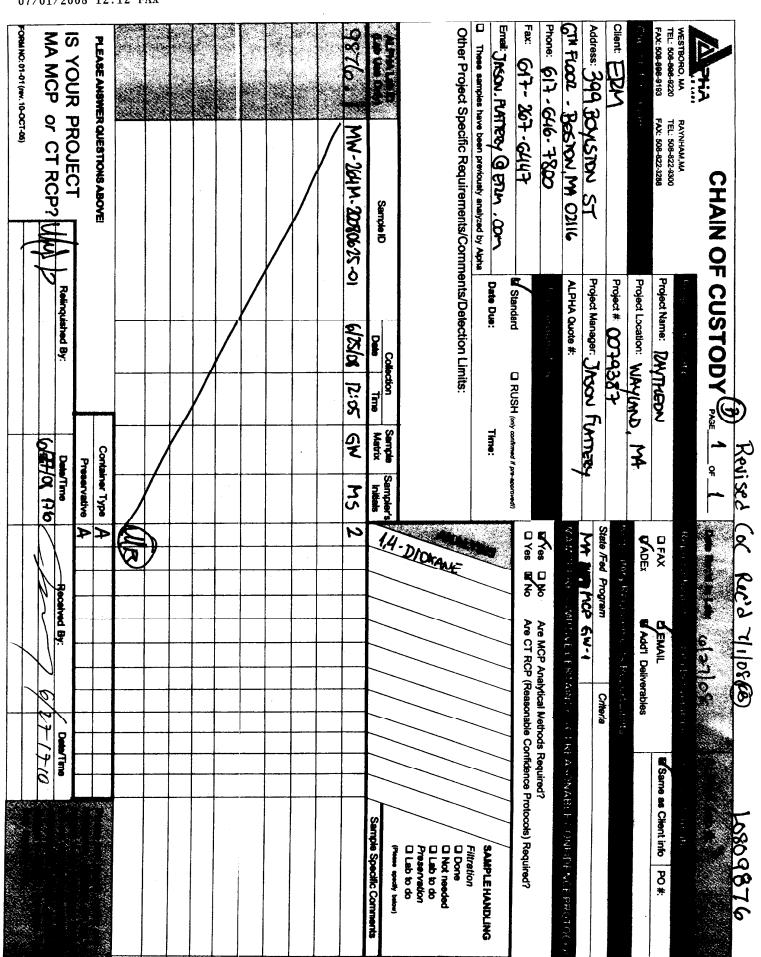
H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

Report Format: Not Specified

Project Name:RAYTHEONLab Number:L0809876Project Number:0079387Report Date:07/15/08

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IIIA, 1997.


LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Page 13 01 27

ANALYTICAL REPORT

<u>Prepared for:</u> Alpha Analytical - Westborough 8 Walkup Drive

Westborough, MA 01581

Project:

ETR:

0806187

Report Date:

July 15, 2008

Certifications and Accreditations

Massachusetts M-MA030
Connecticut PH-0141
New Hampshire 2206
Rhode Island LAO00289
New Jersey MA015
Maine MA0030
New York 11627
Louisiana 03090
Florida E87814
Pennsylvania 68-02089
Army Corps of Engineers
Department of the Navy

This report shall not be reproduced except in full, without written approval from the laboratory.

Sample ID Cross Reference

Client: Project:

Alpha Analytical - Westborough

Lab Code: MA00030

ETR: 0806187

Lab Sample ID

Client Sample ID

0806187-01

MW-264M-20080625-01

CASE NARRATIVE Alpha Analytical

ETR: 0806187

Project: ERM Raytheon, Wayland, MA

All analyses were performed according to Alpha Analytical quality assurance program and documented Standard Operating Procedures (SOPs). The analytical results contained in this report were performed within holding time, and with appropriate quality control measures, except where noted. All soil/sediment results are reported on a dry weight basis unless otherwise noted. A summary of all state and federal accreditations is provided within this report. Blank correction of results is not performed in the laboratory for any parameter. Alpha Analytical certifies that the test results within meet all of the requirements of NELAC, for all NELAC accredited parameters.

The enclosed results of analyses are representative of the samples as received by the laboratory. Alpha Analytical makes no representations or certifications as to the method of sample collection, sample identification, or transporting/handling procedures used prior to the receipt of samples by Alpha Analytical. To the best of my knowledge, the information contained in this report is accurate and complete. For any questions regarding this report, please contact the signatory below at 508-822-9300.

Approved by: Wathlesh O'Brien Title: Technical Representative Date: 1 507

i

1,4-Dioxane By 8270

Client: Project: Alpha Analytical - Westborough

Lab Code: MA00030

ETR: 0806187

Lab ID: 0806187-01

MW-264M-20080625-01 N/A SDG: N/A

Associated Blank: SW070108B02 ng/L

Matrix:

Water

Concentration Units:

Date Collected	Date Received	Date Extracted	Date Analyzed	Sample Amount (ml)	Final Volume (ml)	Dilution Factor	Analyst
06/25/08	06/30/08	07/02/08	07/08/08	1000	10	1	ALM

Parameter

Result

1,4-Dioxane

360 J

		Acceptance
Surrogate	% Recovery	Range (%)
1 4-Dioyane-d8	30	15-110

N/A - Not Applicable J - Estimated value, below quantitation limit.

07/10/08 07:54

Blank Semi-Volatile Organics by 8270

Client:

Alpha Analytical - Westborough

Lab Code: MA00030

ETR: 0806187

Lab ID: SW070108B02

Associated Blank: N/A

Client ID: LCase:

Blank N/A

N/A SDG:

Concentration Units: ng/L

Matrix:

Water

Dilution

	<u> </u>			Sample	Final Volume (ml)	Dilution Factor	Analyst
Date Collected			Date Analyzed 07/08/08	Amount (ml)	10	1	ALM
N/A	N/A	07/02/08	07/06/06	1000	Posult		

Parameter

Result

1,4-Dioxane

500 U

		Acceptance
Surrogate	% Recovery	Range (%)
1,4-Dioxane-d8	40	15-110

N/A - Not Applicable U - The analyte was analyzed for but not detected at the sample specific level reported.

07/10/08 07:53

Laboratory Control Summary Semi-Volatile Organics by 8270

Client: Project: Alpha Analytical - Westborough

Lab Code: MA00030

ETR: 0806187

Lab ID: See Below

Associated Blank: SW070108B02

LCase:

Laboratory Control Sample N/A SDG:

N/A

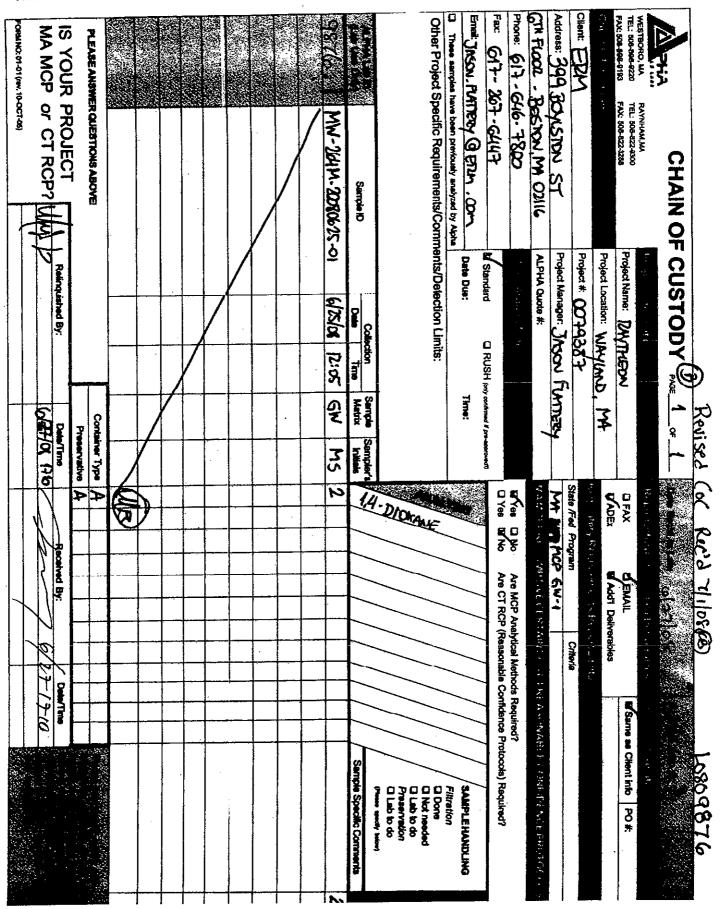
Concentration Units: ng/L

Water Matrix: Analyst Date Extracted

Date Received Date Collected ALM 07/02/08 N/A N/A

Lab ID:	SW070108E	302	SW07	0108LCS01	SW070	108LCSD01			
Additional behavior	Blank		<u> </u>	LCS % Recovery		LCSD % Recovery	% RPD	RPD %	Recovery Limits
Parameter	500	Τĭ	4610	% Recovery	4680	94	2	30	40-140
1,4-Dioxane	300	<u> </u>	7010						

			Acceptance
Surrogate	% Re	covery	Range (%)
1,4-Dioxane-d8	43	34	15-110


N/A - Not Applicable U - The analyte was analyzed for but not detected at the sample specific

level reported.

Concentrations reported as calculated values, which includes rounding for significant figures. Percent recoveries and RPD values 07/10/08 08:01 are calculated from the unrounded result.

Chain of Custody Records

07/01/2008 12:12 FAX

1													-				_		
	Alpha's Paymest Terms.									 			-						
1	resolved. All semples									Н								Or CT RCP?	MA MCP or
8	turnaround time clock will		Date/Time			3,	Received By:	Rec			me	Date/Time			Relinquished By:	Relin		PROJECT	IS YOUR PE
Š	Please print clearly, legibly and completely. Semples can	٠		•		1	1	-	,		,	•	•	Preservative					
		•	•	,	•	•	•	•	•			-	•	Container Type	ဂ			TIONS ABOVE!	PLEASE ANSWER QUESTIONS ABOVE!
																			4
Γ																			
												П							
1									-	H									
Ī																			
1																			
												П							
	Was 9566-01												\boxtimes		WĐ		06/25/08	L0809876-01	108
	Comments		-	-			_					1,4		Initiats	Matrix	Time	Date		(Lab Use Only)
	diam'r.											Dic		Sampler's	Sample	Collection	Coll	Sample ID	ALPHA Lab ID
												хале	J						
so n	belawj																		Revised coc
۳	(Please specify									i			·			ς.	etection Limit	Other Project Specific Requirements/Comments/Detection Limits:	Other Project Specific
40	Preservation														e;	1/08 Fime:	Due Date: 07/14/08	eviously analyzed by Alpha	These samples have been Previously analyzed by Alpha
o ∓	☐ Not Needed												·						Email:
	Done													APPROVED)	Rush (ONLY IF PRE-APPROVED)	□ Rg	Standard		Fax
⊅⊣(HANDLING			\dashv	\dashv		\dashv	-	\dashv		- 8	ANALioio	_ 			Time	Turn-Around Time		Phone:
) - 1	DIE CHANT (Andermating Companies metapolisme		200	00	901820	0	9	2	ľ	2 -	3	S					ALPHA Quote #:		Westboro, Ma 01581
Ì	Required?	minedal			aconaki Idenose	CD (B)		-	֓֟֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֟֓֓֓֓֓֟֓֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓	a (1 60			9	Trans Dean	- Clock Manage		Charles o Hakab Ci.
			ovied?	ods Re	ial Meth	Are MCP Analytical Methods Required?	ž Š	À] 2		N Vac	<u> </u>		Tie .	: Matt Reall	Project Manager: Matt Reaunre		Address: 8 Walking Dr
S	CERTAINTY-CT REASONABLE CONFIDENCE PROTOCOLS	NFIDE	00 E	NABI	EASC	C T Z	N Y	р Д		T G		MCP PRESUMPTIVE	 				Project #:		Client Alpha Analytical Labs, Inc.
-				sria	Criteria					a	Progra	State/Fed Program	&			: MA	Project Location: MA		Client Information
					. Ø	ents/Report Limits	pode	its/Re	етте	equi	ory 5	Regulatory Requirem	<u>۔</u> م					TEL: 508-822-9300 TEL: 603-232-8247 FAX: 508-822-3288 FAX: 603-628-2241	TEL: 508-898-9220 TEL: 508 FAX: 508-898-9193 FAX: 508
						ables	Deliver	Add'l Deliverables			-	⊠ ¥DEx	I			taytheon	Project Name: Raytheon	Bedford, NH	l'
	PO#:		Same as Client info	Same a		ioles S		X EMAIL			mor	FAX				nation	Project Information		ログルン
		ļ	ф #:	ALPHA Job #:	ΑL		1				d in Lat	Date Rec'd in Lab	_ס		PAGE 1 OF 1	2	USTO	CHAIN OF CUSTODY	
-					-	ļ							$\frac{1}{1}$						Willes.

Sample Receipt Checklist

		Page t of/
Client: AUPHA	Receipt Date:	6/30/08
Project:	Log-in Date:	<u>'</u>
ETR#: 0806187	Inspection by:	Login by: 9
ALL SECTIONS BELOW MUST BE COMPL	ETED	Comments / Notes
Were samples shipped? Yes, FedEx / UPS / Other:		Sample storage refrigerator #: 03
No, Alpha Analytical Courier pick-up /	Hand delivered	
Is bill of lading retained? Yes, Tracking #:		Sample storage freezer #:
No, Unavailable / (NA)		
Number of coolers received for this project delivery:		110/10 110/10
Indicate cooler temperature upon opening (if multiple coolers, recor	d <u>all</u> temps):	Cooler 2: $\frac{4}{4}$ Cooler 3: $\frac{7}{4}$
Note: If all coolers are 2-6°C, use one checklist, if NOT, use separa all samples received above 6°C.	te checklists and note	Cooler 2: $\frac{4^0/4^0}{4^0}$ Cooler 3: $\frac{4^0/4^0}{4^0}$ Cooler 5:
Cooler 1:		Cooler 6: Cooler 7:
Cooler 1: Temperature(s) taken from: Cooler 1: Temperature(s) taken from: Cooler 1: Temperature(s) taken from: Temperature(s) taken from: Cooler 1: Temperature(s) taken from: Temperature(s) taken from:	47143 or 94031	More:
Were samples received on ice? Yes / No		
Chain-of-Custody present? Yes / No		
Complete? Yes / No		
Custody seals present on Cooler? Yes / No		
on Bottles? Yes / No		
Intact? Yes / No / NA Note: Affix custody seals to back of this page.		
Were sample containers intact?	If No, list samples: →	
Did VOA/VPH waters contain headspace (>5mm)? Yes / No NA	If Yes, list samples: ->	***
Were 5035 VOA soils, or VPH soils, covered with MeOH? Yes	/ No / NA If No, list samples: →	
Was a sufficient amount of sample received for each test indicated (Yes) No	on the COC? If No, list samples: →	
If chemical preservation is appropriate - Were samples field preserved? Yes / No	/ (NA)	Chemical preservation OK for ALL samples?
□C=HCl □ M=MeOH □ S=H ₂ SO4		Yes / No / N/A
H=NaOH N=HNO ₃ Other: U= Un	known	If No, list samples below:
Preservation (pH) verified at lab for EVERY bottle? (Not: VOA / V	PH / Sulfide)	
	TO MA	
If No, why?:		
Wolo statepool voor	If No, list samples: →	
Discrepancy control samples are	If Yes, list samples: →	
Was the Project Manager notified of any other problems? Yes /	No/ NA	
Project Manager Acknowledgement: Date:		Please use back for any additional notes!

Form No.: 101-04

Alpha Analytical, Inc. Mansfield, Massachusetts 04/17/2008

Sample Delivery Group Form

Client Account: ERM-New England	Received: 06/27/2008 17:10
jamples Delivered by: CLIENT Bill Of Laden N/A Dic Present Present,	Trackingnums
Container Status Intact	Sample IDs
All Containers Accounted For? No Missing MW-555S-20080627-01, MW-555M Also missing Amber for Dup-003-20080625- Were Extra Samples Received? Yes	
Rec'd MW-556S-20080627-01; MW-556M-2 match above samples Do Sample Labels and COC agree? Yes	0080627:01 MW:556D-20080627-01 with date and time
Are Samples in Appropriate Containers? Are Samples Received within Holding time?	Yes Yes
pH of Samples upon Receipt Initial pH preserved in house with Other Issues Chlorine Check N/A	Are samples Properly Preserved? Yes Final pHi
Are VOA/VPH Vials Present? No of a Aqueous: Do Vials Contain Head Space? Soils: Is MeOHCovering the Soil? N/A a Reagent H2O Preserved vials Prozen on a Frozen by Client N/A	NVA
lce.	Delivered Blue Ice Prozen Direct from

Sample Delivery Group Form

Çoğler Seal	ice Present	Blue Ice Present	Temperature	Frozen upon Receipt	Delivered Direct from Site
Ä Äösent	Yes	No	2.9 o - Temp: Blank	No ,	No
B Absenta	Yes	No	12,5 c.+ Temp: Blank	No	No
p Absent	√ ∜(es /	No	26c Temp. Blank	Ňó	No
			15 4 5 1 1 MAG		
	er medica				
1			All The Control of th		
10 10 10 10 10 10 10 10 10 10 10 10 10 1					
soul of the come					
	i Lipin				
			1、大大学的1997年1997年1997年1997年1997年1997年1997年1997		

Certificate/Approval Program Summary

Method numbers assume the most recent EPA revisions. For a complete listing of analytes for the referenced methods please contact your Alpha Woods Hole Lab Project Manager or the Quality Assurance Manager.

Connecticut Department of Public Health Certificate/Lab ID: PH-0141 - Wastewater (General Chemistry: EPA 120.1, 150.1, 160.1, 160.2, 180.1, 300.0, 310.1, 335.2; Metals: 200.8, 245.1; Organics: 608-PCB, ETPH)

Solid Waste/Soil (General Chemistry: 1010, 9010/9014, 9045, 9060; Metals: 6020, 7470, 7471; Organics: 8081, 8082, 8260, 8270, ETPH).

Florida Department of Health Certificate/Lab ID: E87814 - Primary NELAP Accreditation Authority for Air & Emissions. Secondary NELAP Accreditation for Wastwater and Solid & Hazardous Waste. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 335.2, SM2320B, SM2340B, SM2540G, SM4500NH3; Metals: 245.1; Organics: 608-PCB). Solid and Hazardous Waste (General Chemistry: 9010/9014, 9045, 9050, 9056, 9065, Reactivity 7.3; Metals: 6020, 7470, 7471; Organics: 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

Louisiana Department of Environmental Quality Certificate/Lab ID: 03090 - Primary NELAP Accrediting Authority for Wastewater, Solid & Hazardous Waste. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 376.2, 9010/9014, 9056, SM2540G; Metals: 200.8, 245.1, 6020; Organics: 608-PCB, 8015-DRO, 8081, 8082, 8260, 8270). Solid and Hazardous Waste (General Chemistry: 1010, 1311, 9010/9014, 9040, 9045, 9056, 9060, Reactivity 7.3; Metals: 6020, 7196, 7470, 7471; Organics: 8015-DRO, 8081, 8082, 8260, 8270).

Maine Department of Human Services Certificate/Lab ID: MA0030 - Wastewater (General Chemistry: EPA 120.1/SM2510B, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 335.2; Metals: EPA 245.1; Organics: 608-PCB).

Massachusetts Department of Environmental Protection Certificate/Lab ID: M-MA030 - Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 335.2; Metals: EPA 245.1; Organics: EPA 608-PCB).

New Hampshire Department of Environmental Services Certificate/Lab ID: 2206 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 376.2, SM2540G; Metals: 200.8, 245.4; Organics: 608-PCB).

New Jersey Department of Environmental Protection Certificate/Lab ID: MA015 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 180.1, 300.0, 310.1/SM2320B, 335.2, 376.2, 9010/9014, 9056, SM2540G; Metals: 200.8, 245.1 6020; Organics: 608-PCB, 8081, 8082, 8260, 8270). Solid & Hazardous Waste (General Chemistry: EPA 1010, 1311, 9010/9014, 9040, 9045, 9056, 9060; Metals: 6020, 7196, 7470, 7471; Organics: 8015-DRO, 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

New York Department of Health Certificate/Lab ID: 11627 - Secondary NELAP Accreditation. Wastewater (General Chemistry: EPA 120.1/SM2510B, 150.1, 160.1/SM2540C, 160.2/SM2540D, 300.0, 310.1/SM2320B, 376.2; Metals: 200.8, 245.1; Organics: 608-PCB). Solid and Hazardous Waste (General Chemistry: EPA 1010, 1311; : 200.8; 6030;7041; Organics: 8081, 8082, 8260, 8270). Air & Emissions (Organics: EPA TO-15).

Rhode Island Department of Health Certificate/Lab ID: LAO00289 - Chemistry: Organic and Inorganic in Non-Poratable Water, Wastewater/Sewage and Soil (Refer to LADEQ and MADEP certificates for method numbers.)

Pennsylvania Department of Environmental Protection Certificate/Lab ID: 68-02089 - Registered laboratory

U.S. Army Corps of Engineers

Department of the Navy

ANALYTICAL REPORT

Lab Number: L0809567

Client: ERM-New England

399 Boylston Street

6th Floor

Boston, MA 02116

ATTN: Jason Flattery

Project Name: RAYTHEON
Project Number: 0079387

Report Date: 07/09/08

Certifications & Approvals: MA (M-MA086), NY NELAC (11148), CT (PH-0574), NH (2003), NJ (MA935), RI (LAO00065), ME (MA0086), PA (Registration #68-03671), USDA (Permit #S-72578), US Army Corps of Engineers, Naval FESC.

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:RAYTHEONLab Number:L0809567Project Number:0079387Report Date:07/09/08

Alpha Sample ID	Client ID	Sample Location
L0809567-01	TB-01-20080627	WAYLAND, MA
L0809567-02	MW-267S-20080625-01	WAYLAND, MA
L0809567-03	DUP-003-20080625-01	WAYLAND, MA

Project Name:RAYTHEONLab Number:L0809567Project Number:0079387Report Date:07/09/08

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

Α	Were all samples received by the laboratory in a condition consistent with those described on their Chain-of-Custody documentation for the data set?	YES
В	Were all QA/QC procedures required for the specified analytical methods(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?	YES
С	Does the analytical data included in this report meet all the requirements for "Presumptive Certainty", as described in section 2.0 of the MADEP document CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data"?	YES
D	VPH and EPH methods only: Was the VPH or EPH method run without significant modifications, as specified in Section 11.3?	N/A
A re	sponse to questions E and F is required for "Presumptive Certainty" status	
E	Were all QC performance standards and recommendations for the specified method(s) achieved?	NO
F	Were results for all analyte-list compounds/elements for the specified method(s) reported?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:RAYTHEONLab Number:L0809567Project Number:0079387Report Date:07/09/08

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

Report Submission

This report replaces the report issued June 3, 2008. The results for samples L0809567-04, -05, and -06 were removed and reported under Alpha Job L0809866.

The results of the 1,4-Dioxane analysis will be issued under separate cover.

MCP Related Narratives:

Volatile Organics

L0809567-02 and -03 have elevated detection limits due to the dilutions required by the elevated concentrations of target compounds in the samples.

In reference to question E:

07090811:08

Project Name:RAYTHEONLab Number:L0809567Project Number:0079387Report Date:07/09/08

Case Narrative (continued)

The WG327572-1/-2 LCS/LCSD recoveries associated with L0809567-01 and -02 are below the acceptance criteria for Bromomethane; however, it has been identified as a "difficult" analyte. The results of the associated samples are reported; however, all results are considered to have a potentially low bias for this compound. The WG327572-2 LCSD recovery associated with L0809567-01 and -02 is above the acceptance criteria for Dichlorodifluoromethane; however, it has been identified as a "difficult" analyte. The results of the associated samples are reported; however, all positive detects are considered to have a potentially high bias for this compound.

The WG327797-1/-2 LCS/LCSD recoveries associated with L0809567-03 are below the acceptance criteria for Acetone; however, it has been identified as a "difficult" analyte. The results of the associated samples are reported; however, all results are considered to have a potentially low bias for this compound.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative

ANALYTICAL

Date: 07/09/08

ORGANICS

VOLATILES

Project Name: RAYTHEON Lab Number: L0809567

Project Number: 0079387 Report Date: 07/09/08

SAMPLE RESULTS

 Lab ID:
 L0809567-01
 Date Collected:
 06/22/08 17:00

 Client ID:
 TB-01-20080627
 Date Received:
 06/27/08

Sample Location: WAYLAND, MA Field Prep: Not Specified

Matrix: Water
Anaytical Method: 60,8260B
Analytical Date: 06/30/08 18:23

Analyst: GK

Volatile Organics by MCP 8260B Methylene chloride ,1-Dichloroethane Chloroform Carbon tetrachloride	ND ND ND ND	ug/l ug/l ug/l	5.0 0.75	11
,1-Dichloroethane Chloroform	ND ND ND	ug/l		
Chloroform	ND ND		0.75	4
	ND	ua/l		1
Carbon totrophlarida		ug/i	0.75	1
albon tetracilionae	ND	ug/l	0.50	1
,2-Dichloropropane		ug/l	1.8	1
Dibromochloromethane	ND	ug/l	0.50	1
,1,2-Trichloroethane	ND	ug/l	0.75	1
etrachloroethene	ND	ug/l	0.50	1
Chlorobenzene	ND	ug/l	0.50	1
richlorofluoromethane	ND	ug/l	2.5	1
,2-Dichloroethane	ND	ug/l	0.50	1
,1,1-Trichloroethane	ND	ug/l	0.50	1
romodichloromethane	ND	ug/l	0.50	1
rans-1,3-Dichloropropene	ND	ug/l	0.50	1
is-1,3-Dichloropropene	ND	ug/l	0.50	1
,1-Dichloropropene	ND	ug/l	2.5	1
Fromoform	ND	ug/l	2.0	1
,1,2,2-Tetrachloroethane	ND	ug/l	0.50	1
Senzene	ND	ug/l	0.50	1
oluene	ND	ug/l	0.75	1
thylbenzene	ND	ug/l	0.50	1
Chloromethane	ND	ug/l	2.5	1
Fromomethane	ND	ug/l	1.0	1
'inyl chloride	ND	ug/l	1.0	1
Chloroethane	ND	ug/l	1.0	1
,1-Dichloroethene	ND	ug/l	0.50	1
rans-1,2-Dichloroethene	ND	ug/l	0.75	1
richloroethene	ND	ug/l	0.50	1
,2-Dichlorobenzene	ND	ug/l	2.5	1
,3-Dichlorobenzene	ND	ug/l	2.5	1

Project Name: RAYTHEON Lab Number: L0809567

Project Number: 0079387 Report Date: 07/09/08

SAMPLE RESULTS

Lab ID: Date Collected: 06/22/08 17:00

Client ID:TB-01-20080627Date Received:06/27/08Sample Location:WAYLAND, MAField Prep:Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
1,4-Dichlorobenzene	ND		ug/l	2.5	1
Methyl tert butyl ether	ND		ug/l	1.0	1
p/m-Xylene	ND		ug/l	1.0	 1
o-Xylene	ND		ug/l	1.0	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	1
Dibromomethane	ND		ug/l	5.0	1
1,2,3-Trichloropropane	ND		ug/l	5.0	1
Styrene	ND		ug/l	1.0	1
Dichlorodifluoromethane	ND		ug/l	5.0	1
Acetone	ND		ug/l	5.0	1
Carbon disulfide	ND		ug/l	5.0	1
2-Butanone	ND		ug/l	5.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1
2-Hexanone	ND		ug/l	5.0	1
Bromochloromethane	ND		ug/l	2.5	1
Tetrahydrofuran	ND		ug/l	10	1
2,2-Dichloropropane	ND		ug/l	2.5	1
1,2-Dibromoethane	ND		ug/l	2.0	1
1,3-Dichloropropane	ND		ug/l	2.5	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	1
Bromobenzene	ND		ug/l	2.5	1
n-Butylbenzene	ND		ug/l	0.50	1
sec-Butylbenzene	ND		ug/l	0.50	1
tert-Butylbenzene	ND		ug/l	2.5	1
o-Chlorotoluene	ND		ug/l	2.5	1
p-Chlorotoluene	ND		ug/l	2.5	11
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	1
Hexachlorobutadiene	ND		ug/l	0.60	1
Isopropylbenzene	ND		ug/l	0.50	1
p-Isopropyltoluene	ND		ug/l	0.50	1
Naphthalene	ND		ug/l	2.5	1
n-Propylbenzene	ND		ug/l	0.50	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	1
Ethyl ether	ND		ug/l	2.5	1

Project Name: RAYTHEON Lab Number: L0809567

Project Number: 0079387 Report Date: 07/09/08

SAMPLE RESULTS

Lab ID: Date Collected: 06/22/08 17:00

Client ID: TB-01-20080627 Date Received: 06/27/08
Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Isopropyl Ether	ND		ug/l	2.0	1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0	1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0	1
1,4-Dioxane	ND		ug/l	250	1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	87		70-130			
Toluene-d8	98		70-130			
4-Bromofluorobenzene	99		70-130			
Dibromofluoromethane	98		70-130			

Project Name: RAYTHEON Lab Number: L0809567

Project Number: 0079387 Report Date: 07/09/08

SAMPLE RESULTS

Lab ID: Date Collected: 06/27/08 15:45

Client ID:MW-267S-20080625-01Date Received:06/27/08Sample Location:WAYLAND, MAField Prep:Not Specified

Matrix: Water
Anaytical Method: 60,8260B
Analytical Date: 06/30/08 18:57

Analyst: GK

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	50	10
1,1-Dichloroethane	ND		ug/l	7.5	10
Chloroform	ND		ug/l	7.5	10
Carbon tetrachloride	ND		ug/l	5.0	10
1,2-Dichloropropane	ND		ug/l	18	10
Dibromochloromethane	ND		ug/l	5.0	10
1,1,2-Trichloroethane	ND		ug/l	7.5	10
Tetrachloroethene	17		ug/l	5.0	10
Chlorobenzene	ND		ug/l	5.0	10
Trichlorofluoromethane	ND		ug/l	25	10
1,2-Dichloroethane	ND		ug/l	5.0	10
1,1,1-Trichloroethane	ND		ug/l	5.0	10
Bromodichloromethane	ND		ug/l	5.0	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	10
1,1-Dichloropropene	ND		ug/l	25	10
Bromoform	ND		ug/l	20	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	10
Benzene	ND		ug/l	5.0	10
Toluene	ND		ug/l	7.5	10
Ethylbenzene	ND		ug/l	5.0	10
Chloromethane	ND		ug/l	25	10
Bromomethane	ND		ug/l	10	10
Vinyl chloride	ND		ug/l	10	10
Chloroethane	ND		ug/l	10	10
1,1-Dichloroethene	ND		ug/l	5.0	10
trans-1,2-Dichloroethene	ND		ug/l	7.5	10
Trichloroethene	610		ug/l	5.0	10
1,2-Dichlorobenzene	ND		ug/l	25	10
1,3-Dichlorobenzene	ND		ug/l	25	10

Project Name: RAYTHEON Lab Number: L0809567

Project Number: 0079387 Report Date: 07/09/08

SAMPLE RESULTS

Lab ID: Date Collected: 06/27/08 15:45

Client ID:MW-267S-20080625-01Date Received:06/27/08Sample Location:WAYLAND, MAField Prep:Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
1,4-Dichlorobenzene	ND		ug/l	25	10
Methyl tert butyl ether	ND		ug/l	10	10
p/m-Xylene	ND		ug/l	10	10
o-Xylene	ND		ug/l	10	10
cis-1,2-Dichloroethene	89		ug/l	5.0	10
Dibromomethane	ND		ug/l	50	10
1,2,3-Trichloropropane	ND		ug/l	50	10
Styrene	ND		ug/l	10	10
Dichlorodifluoromethane	ND		ug/l	50	10
Acetone	ND		ug/l	50	10
Carbon disulfide	ND		ug/l	50	10
2-Butanone	ND		ug/l	50	10
4-Methyl-2-pentanone	ND		ug/l	50	10
2-Hexanone	ND		ug/l	50	10
Bromochloromethane	ND		ug/l	25	10
Tetrahydrofuran	ND		ug/l	100	10
2,2-Dichloropropane	ND		ug/l	25	10
1,2-Dibromoethane	ND		ug/l	20	10
1,3-Dichloropropane	ND		ug/l	25	10
1,1,1,2-Tetrachloroethane	ND		ug/l	5.0	10
Bromobenzene	ND		ug/l	25	10
n-Butylbenzene	ND		ug/l	5.0	10
sec-Butylbenzene	ND		ug/l	5.0	10
tert-Butylbenzene	ND		ug/l	25	10
o-Chlorotoluene	ND		ug/l	25	10
p-Chlorotoluene	ND		ug/l	25	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	10
Hexachlorobutadiene	ND		ug/l	6.0	10
Isopropylbenzene	ND		ug/l	5.0	10
p-Isopropyltoluene	ND		ug/l	5.0	10
Naphthalene	ND		ug/l	25	10
n-Propylbenzene	ND		ug/l	5.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	10
1,2,4-Trichlorobenzene	ND		ug/l	25	10
1,3,5-Trimethylbenzene	ND		ug/l	25	10
1,2,4-Trimethylbenzene	ND		ug/l	25	10
Ethyl ether	ND		ug/l	25	10

Project Name: RAYTHEON Lab Number: L0809567

Project Number: 0079387 Report Date: 07/09/08

SAMPLE RESULTS

Lab ID: Date Collected: 06/27/08 15:45

Client ID: MW-267S-20080625-01 Date Received: 06/27/08
Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Isopropyl Ether	ND		ug/l	20	10
Ethyl-Tert-Butyl-Ether	ND		ug/l	20	10
Tertiary-Amyl Methyl Ether	ND		ug/l	20	10
1,4-Dioxane	ND		ug/l	2500	10

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	85	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	94	70-130
Dibromofluoromethane	98	70-130

Project Name: RAYTHEON Lab Number: L0809567

Project Number: 0079387 Report Date: 07/09/08

SAMPLE RESULTS

Lab ID: L0809567-03 Date Collected: 06/27/08 00:00

Client ID:DUP-003-20080625-01Date Received:06/27/08Sample Location:WAYLAND, MAField Prep:Not Specified

Matrix: Water
Anaytical Method: 60,8260B
Analytical Date: 07/01/08 14:10

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Methylene chloride	ND		ug/l	50	10
1,1-Dichloroethane	ND		ug/l	7.5	10
Chloroform	ND		ug/l	7.5	10
Carbon tetrachloride	ND		ug/l	5.0	10
1,2-Dichloropropane	ND		ug/l	18	10
Dibromochloromethane	ND		ug/l	5.0	10
1,1,2-Trichloroethane	ND		ug/l	7.5	10
Tetrachloroethene	17		ug/l	5.0	10
Chlorobenzene	ND		ug/l	5.0	10
Trichlorofluoromethane	ND		ug/l	25	10
1,2-Dichloroethane	ND		ug/l	5.0	10
1,1,1-Trichloroethane	ND		ug/l	5.0	10
Bromodichloromethane	ND		ug/l	5.0	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	10
1,1-Dichloropropene	ND		ug/l	25	10
Bromoform	ND		ug/l	20	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	10
Benzene	ND		ug/l	5.0	10
Toluene	ND		ug/l	7.5	10
Ethylbenzene	ND		ug/l	5.0	10
Chloromethane	ND		ug/l	25	10
Bromomethane	ND		ug/l	10	10
Vinyl chloride	ND		ug/l	10	10
Chloroethane	ND		ug/l	10	10
1,1-Dichloroethene	ND		ug/l	5.0	10
trans-1,2-Dichloroethene	ND		ug/l	7.5	10
Trichloroethene	650		ug/l	5.0	10
1,2-Dichlorobenzene	ND		ug/l	25	10
1,3-Dichlorobenzene	ND		ug/l	25	10

Project Name: RAYTHEON Lab Number: L0809567

Project Number: 0079387 Report Date: 07/09/08

SAMPLE RESULTS

Lab ID: L0809567-03 Date Collected: 06/27/08 00:00

Client ID:DUP-003-20080625-01Date Received:06/27/08Sample Location:WAYLAND, MAField Prep:Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
1,4-Dichlorobenzene	ND		ug/l	25	10
Methyl tert butyl ether	ND		ug/l	10	10
p/m-Xylene	ND		ug/l	10	10
o-Xylene	ND		ug/l	10	10
cis-1,2-Dichloroethene	95		ug/l	5.0	10
Dibromomethane	ND		ug/l	50	10
1,2,3-Trichloropropane	ND		ug/l	50	10
Styrene	ND		ug/l	10	10
Dichlorodifluoromethane	ND		ug/l	50	10
Acetone	ND		ug/l	50	10
Carbon disulfide	ND		ug/l	50	10
2-Butanone	ND		ug/l	50	10
4-Methyl-2-pentanone	ND		ug/l	50	10
2-Hexanone	ND		ug/l	50	10
Bromochloromethane	ND		ug/l	25	10
Tetrahydrofuran	ND		ug/l	100	10
2,2-Dichloropropane	ND		ug/l	25	10
1,2-Dibromoethane	ND		ug/l	20	10
1,3-Dichloropropane	ND		ug/l	25	10
1,1,1,2-Tetrachloroethane	ND		ug/l	5.0	10
Bromobenzene	ND		ug/l	25	10
n-Butylbenzene	ND		ug/l	5.0	10
sec-Butylbenzene	ND		ug/l	5.0	10
tert-Butylbenzene	ND		ug/l	25	10
o-Chlorotoluene	ND		ug/l	25	10
p-Chlorotoluene	ND		ug/l	25	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	10
Hexachlorobutadiene	ND		ug/l	6.0	10
Isopropylbenzene	ND		ug/l	5.0	10
p-Isopropyltoluene	ND		ug/l	5.0	10
Naphthalene	ND		ug/l	25	10
n-Propylbenzene	ND		ug/l	5.0	10
1,2,3-Trichlorobenzene	ND		ug/l	25	10
1,2,4-Trichlorobenzene	ND		ug/l	25	10
1,3,5-Trimethylbenzene	ND		ug/l	25	10
1,2,4-Trimethylbenzene	ND		ug/l	25	10

Project Name: RAYTHEON Lab Number: L0809567

Project Number: 0079387 Report Date: 07/09/08

SAMPLE RESULTS

Lab ID: L0809567-03 Date Collected: 06/27/08 00:00

Client ID: DUP-003-20080625-01 Date Received: 06/27/08
Sample Location: WAYLAND, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RDL	Dilution Factor
Volatile Organics by MCP 8260B					
Isopropyl Ether	ND		ug/l	20	10
Ethyl-Tert-Butyl-Ether	ND		ug/l	20	10
Tertiary-Amyl Methyl Ether	ND		ug/l	20	10
1,4-Dioxane	ND		ug/l	2500	10

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
1,2-Dichloroethane-d4	104		70-130				
Toluene-d8	100		70-130				
4-Bromofluorobenzene	101		70-130				
Dibromofluoromethane	109		70-130				

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 06/30/08 11:07

Analyst: GK

Parameter	Result	Qualifie	r L	Jnits	RDL
olatile Organics by MCP 8260B for	sample(s):	01-02	Batch:	: WG	327572-3
Methylene chloride	ND			ug/l	5.0
1,1-Dichloroethane	ND			ug/l	0.75
Chloroform	ND			ug/l	0.75
Carbon tetrachloride	ND			ug/l	0.50
1,2-Dichloropropane	ND			ug/l	1.8
Dibromochloromethane	ND			ug/l	0.50
1,1,2-Trichloroethane	ND			ug/l	0.75
Tetrachloroethene	ND			ug/l	0.50
Chlorobenzene	ND			ug/l	0.50
Trichlorofluoromethane	ND			ug/l	2.5
1,2-Dichloroethane	ND			ug/l	0.50
1,1,1-Trichloroethane	ND			ug/l	0.50
Bromodichloromethane	ND			ug/l	0.50
trans-1,3-Dichloropropene	ND			ug/l	0.50
cis-1,3-Dichloropropene	ND			ug/l	0.50
1,1-Dichloropropene	ND			ug/l	2.5
Bromoform	ND			ug/l	2.0
1,1,2,2-Tetrachloroethane	ND			ug/l	0.50
Benzene	ND			ug/l	0.50
Toluene	ND			ug/l	0.75
Ethylbenzene	ND			ug/l	0.50
Chloromethane	ND			ug/l	2.5
Bromomethane	ND			ug/l	1.0
Vinyl chloride	ND			ug/l	1.0
Chloroethane	ND			ug/l	1.0
1,1-Dichloroethene	ND			ug/l	0.50
trans-1,2-Dichloroethene	ND			ug/l	0.75
Trichloroethene	ND			ug/l	0.50
1,2-Dichlorobenzene	ND			ug/l	2.5
1,3-Dichlorobenzene	ND			ug/l	2.5
1,4-Dichlorobenzene	ND			ug/l	2.5

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 06/30/08 11:07

Analyst: GK

Result	Qualifie	r l	Units	RDL
sample(s):	01-02	Batch	: WG	327572-3
ND			ua/l	1.0
				1.0
				1.0
				0.50
				5.0
ND				5.0
ND				1.0
ND			ug/l	5.0
ND			ug/l	5.0
ND			ug/l	5.0
ND			ug/l	5.0
ND			ug/l	5.0
ND			ug/l	5.0
ND			ug/l	2.5
ND			ug/l	10
ND			ug/l	2.5
ND			ug/l	2.0
ND			ug/l	2.5
ND			ug/l	0.50
ND			ug/l	2.5
ND			ug/l	0.50
ND			ug/l	0.50
ND			ug/l	2.5
ND			ug/l	2.5
ND			ug/l	2.5
ND			ug/l	2.5
ND			ug/l	0.60
ND			ug/l	0.50
ND			ug/l	0.50
ND			ug/l	2.5
ND			ug/l	0.50
	Sample(s): ND ND ND ND ND ND ND ND ND N	ND ND	Sample(s): 01-02 Batch ND ND ND ND ND ND ND ND ND N	ND ug/l ND

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 06/30/08 11:07

Analyst: GK

Parameter	Result	Qualifie	r Ur	nits	RDL	
olatile Organics by MCP 8260B fc	or sample(s):	01-02	Batch:	WG32	7572-3	
1,2,3-Trichlorobenzene	ND		u	g/l	2.5	
1,2,4-Trichlorobenzene	ND		u	g/l	2.5	
1,3,5-Trimethylbenzene	ND		u	g/l	2.5	
1,2,4-Trimethylbenzene	ND		u	g/l	2.5	
Ethyl ether	ND		u	g/l	2.5	
Isopropyl Ether	ND		u	g/l	2.0	
Ethyl-Tert-Butyl-Ether	ND		u	g/l	2.0	
Tertiary-Amyl Methyl Ether	ND		u	g/l	2.0	
1,4-Dioxane	ND		u	g/l	250	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		u	g/l	10	

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/l

Surrogate	%Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	101	70-130	

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 07/01/08 10:52

Parameter	Result	Qua	lifier	Units	RDL
Volatile Organics by MCP 8260B fo	r sample(s):	03	Batch:	WG3277	797-3
Methylene chloride	ND			ug/l	5.0
1,1-Dichloroethane	ND			ug/l	0.75
Chloroform	ND			ug/l	0.75
Carbon tetrachloride	ND			ug/l	0.50
1,2-Dichloropropane	ND			ug/l	1.8
Dibromochloromethane	ND			ug/l	0.50
1,1,2-Trichloroethane	ND			ug/l	0.75
Tetrachloroethene	ND			ug/l	0.50
Chlorobenzene	ND			ug/l	0.50
Trichlorofluoromethane	ND			ug/l	2.5
1,2-Dichloroethane	ND			ug/l	0.50
1,1,1-Trichloroethane	ND			ug/l	0.50
Bromodichloromethane	ND			ug/l	0.50
trans-1,3-Dichloropropene	ND			ug/l	0.50
cis-1,3-Dichloropropene	ND			ug/l	0.50
1,1-Dichloropropene	ND			ug/l	2.5
Bromoform	ND			ug/l	2.0
1,1,2,2-Tetrachloroethane	ND			ug/l	0.50
Benzene	ND			ug/l	0.50
Toluene	ND			ug/l	0.75
Ethylbenzene	ND			ug/l	0.50
Chloromethane	ND			ug/l	2.5
Bromomethane	ND			ug/l	1.0
Vinyl chloride	ND			ug/l	1.0
Chloroethane	ND			ug/l	1.0
1,1-Dichloroethene	ND			ug/l	0.50
trans-1,2-Dichloroethene	ND			ug/l	0.75
Trichloroethene	ND			ug/l	0.50
1,2-Dichlorobenzene	ND			ug/l	2.5
1,3-Dichlorobenzene	ND			ug/l	2.5
1,4-Dichlorobenzene	ND			ug/l	2.5

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 07/01/08 10:52

Parameter	Result	Qua	lifier	Units	RDL
Volatile Organics by MCP 8260B fo	r sample(s):	03	Batch:	WG3277	797-3
Methyl tert butyl ether	ND			ug/l	1.0
p/m-Xylene	ND			ug/l	1.0
o-Xylene	ND			ug/l	1.0
cis-1,2-Dichloroethene	ND			ug/l	0.50
Dibromomethane	ND			ug/l	5.0
1,2,3-Trichloropropane	ND			ug/l	5.0
Styrene	ND			ug/l	1.0
Dichlorodifluoromethane	ND			ug/l	5.0
Acetone	ND			ug/l	5.0
Carbon disulfide	ND			ug/l	5.0
2-Butanone	ND			ug/l	5.0
4-Methyl-2-pentanone	ND			ug/l	5.0
2-Hexanone	ND			ug/l	5.0
Bromochloromethane	ND			ug/l	2.5
Tetrahydrofuran	ND			ug/l	10
2,2-Dichloropropane	ND			ug/l	2.5
1,2-Dibromoethane	ND			ug/l	2.0
1,3-Dichloropropane	ND			ug/l	2.5
1,1,1,2-Tetrachloroethane	ND			ug/l	0.50
Bromobenzene	ND			ug/l	2.5
n-Butylbenzene	ND			ug/l	0.50
sec-Butylbenzene	ND			ug/l	0.50
tert-Butylbenzene	ND			ug/l	2.5
o-Chlorotoluene	ND			ug/l	2.5
p-Chlorotoluene	ND			ug/l	2.5
1,2-Dibromo-3-chloropropane	ND			ug/l	2.5
Hexachlorobutadiene	ND			ug/l	0.60
Isopropylbenzene	ND			ug/l	0.50
p-Isopropyltoluene	ND			ug/l	0.50
Naphthalene	ND			ug/l	2.5
n-Propylbenzene	ND			ug/l	0.50

Method Blank Analysis Batch Quality Control

Analytical Method: 60,8260B Analytical Date: 07/01/08 10:52

Parameter	Result	Qualifier	Units	RDL
olatile Organics by MCP 8260B	for sample(s):	03 Batch	n: WG3277	97-3
1,2,3-Trichlorobenzene	ND		ug/l	2.5
1,2,4-Trichlorobenzene	ND		ug/l	2.5
1,3,5-Trimethylbenzene	ND		ug/l	2.5
1,2,4-Trimethylbenzene	ND		ug/l	2.5
Ethyl ether	ND		ug/l	2.5
Isopropyl Ether	ND		ug/l	2.0
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0
1,4-Dioxane	ND		ug/l	250

		Acceptance						
Surrogate	%Recovery	Qualifier	Criteria					
400:11	••		70.400					
1,2-Dichloroethane-d4	98		70-130					
Toluene-d8	97		70-130					
4-Bromofluorobenzene	102		70-130					
Dibromofluoromethane	106		70-130					

Lab Number: L0809567

Report Date: 07/09/08

ırameter	LCS %Recovery	C	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
platile Organics by MCP 8260B A	Associated sample(s): 01	-02 Batch:	WG327572-1	WG327572-2		
Methylene chloride	83		85	70-130	2	25
1,1-Dichloroethane	88		88	70-130	0	25
Chloroform	88		89	70-130	1	25
Carbon tetrachloride	107		111	70-130	4	25
1,2-Dichloropropane	89		90	70-130	1	25
Dibromochloromethane	97		99	70-130	2	25
1,1,2-Trichloroethane	89		93	70-130	4	25
Tetrachloroethene	97		96	70-130	1	25
Chlorobenzene	95		94	70-130	1	25
Trichlorofluoromethane	88		93	70-130	6	25
1,2-Dichloroethane	84		88	70-130	5	25
1,1,1-Trichloroethane	91		95	70-130	4	25
Bromodichloromethane	90		94	70-130	4	25
trans-1,3-Dichloropropene	86		88	70-130	2	25
cis-1,3-Dichloropropene	92		96	70-130	4	25
1,1-Dichloropropene	86		88	70-130	2	25
Bromoform	103		106	70-130	3	50
1,1,2,2-Tetrachloroethane	96		100	70-130	4	25
Benzene	92		93	70-130	1	25
Toluene	94		93	70-130	1	25
Ethylbenzene	94		94	70-130	0	25

Lab Number: L0809567

Report Date: 07/09/08

rameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
platile Organics by MCP 8260B A	Associated sample(s): 01-0	2 Batch: WG327572-1	WG327572-2		
Chloromethane	92	96	70-130	4	50
Bromomethane	68	65	70-130	5	50
Vinyl chloride	80	81	70-130	1	25
Chloroethane	77	80	70-130	4	25
1,1-Dichloroethene	80	83	70-130	4	25
trans-1,2-Dichloroethene	94	95	70-130	1	25
Trichloroethene	91	91	70-130	0	25
1,2-Dichlorobenzene	100	101	70-130	1	25
1,3-Dichlorobenzene	99	98	70-130	1	25
1,4-Dichlorobenzene	100	99	70-130	1	25
Methyl tert butyl ether	97	104	70-130	7	25
p/m-Xylene	98	96	70-130	2	25
o-Xylene	101	100	70-130	1	25
cis-1,2-Dichloroethene	95	94	70-130	1	25
Dibromomethane	87	93	70-130	7	25
1,2,3-Trichloropropane	100	103	70-130	3	25
Styrene	100	98	70-130	2	25
Dichlorodifluoromethane	129	131	70-130	2	50
Acetone	71	74	70-130	4	50
Carbon disulfide	72	74	70-130	3	25
2-Butanone	82	88	70-130	7	50

Lab Number: L0809567

Report Date: 07/09/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B Associated	sample(s): 01-02	Batch: WG327572-1	WG327572-2		
4-Methyl-2-pentanone	89	93	70-130	4	50
2-Hexanone	81	85	70-130	5	50
Bromochloromethane	96	100	70-130	4	25
Tetrahydrofuran	78	94	70-130	19	25
2,2-Dichloropropane	118	121	70-130	3	50
1,2-Dibromoethane	97	98	70-130	1	25
1,3-Dichloropropane	86	91	70-130	6	25
1,1,1,2-Tetrachloroethane	102	102	70-130	0	25
Bromobenzene	99	98	70-130	1	25
n-Butylbenzene	93	97	70-130	4	25
sec-Butylbenzene	96	98	70-130	2	25
tert-Butylbenzene	96	98	70-130	2	25
o-Chlorotoluene	91	89	70-130	2	25
p-Chlorotoluene	92	92	70-130	0	25
1,2-Dibromo-3-chloropropane	97	95	70-130	2	50
Hexachlorobutadiene	100	106	70-130	6	25
Isopropylbenzene	114	114	70-130	0	25
p-Isopropyltoluene	100	102	70-130	2	25
Naphthalene	97	102	70-130	5	25
n-Propylbenzene	94	93	70-130	1	25
1,2,3-Trichlorobenzene	106	110	70-130	4	25

Lab Number: L0809567

Report Date: 07/09/08

RAYTHEON **Project Name: Project Number:** 0079387

Parameter	LCS %Recover	у	C	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
/olatile Organics by MCP 8260B Assoc	iated sample(s):	01-02	Batch:	WG327572-1	WG327572-2		
1,2,4-Trichlorobenzene	100			103	70-130	3	25
1,3,5-Trimethylbenzene	94			94	70-130	0	25
1,2,4-Trimethylbenzene	94			93	70-130	1	25
Ethyl ether	80			83	70-130	4	25
Isopropyl Ether	89			92	70-130	3	25
Ethyl-Tert-Butyl-Ether	110			116	70-130	5	25
Tertiary-Amyl Methyl Ether	115			123	70-130	7	25
1,4-Dioxane	110			108	70-130	2	50
1,1,2-Trichloro-1,2,2-Trifluoroethane	88			88	70-130	0	50

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	85	85	70-130
Toluene-d8	100	98	70-130
4-Bromofluorobenzene	96	94	70-130
Dibromofluoromethane	97	98	70-130

Lab Number: L0809567

Report Date: 07/09/08

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Volatile Organics by MCP 8260B Associate	ted sample(s): 03 Batch:	WG327797-1	WG327797-2		
Methylene chloride	105	105	70-130	0	25
1,1-Dichloroethane	100	98	70-130	2	25
Chloroform	100	98	70-130	2	25
Carbon tetrachloride	104	95	70-130	9	25
1,2-Dichloropropane	98	97	70-130	1	25
Dibromochloromethane	102	101	70-130	1	25
1,1,2-Trichloroethane	94	95	70-130	1	25
Tetrachloroethene	98	91	70-130	7	25
Chlorobenzene	98	97	70-130	1	25
Trichlorofluoromethane	110	103	70-130	7	25
1,2-Dichloroethane	95	95	70-130	0	25
1,1,1-Trichloroethane	101	93	70-130	8	25
Bromodichloromethane	102	99	70-130	3	25
trans-1,3-Dichloropropene	95	97	70-130	2	25
cis-1,3-Dichloropropene	96	96	70-130	0	25
1,1-Dichloropropene	95	88	70-130	8	25
Bromoform	107	109	70-130	2	50
1,1,2,2-Tetrachloroethane	99	103	70-130	4	25
Benzene	102	99	70-130	3	25
Toluene	100	99	70-130	1	25
Ethylbenzene	101	100	70-130	1	25

Project Name: RAYTHEON **Project Number:** 0079387

Lab Number: L0809567

Report Date: 07/09/08

arameter	LCS %Recovery		LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by MCP 8260B A	Associated sample(s): 03	Batch:	WG327797-1	WG327797-2		
Chloromethane	105		98	70-130	7	50
Bromomethane	110		114	70-130	4	50
Vinyl chloride	109		99	70-130	10	25
Chloroethane	121		115	70-130	5	25
1,1-Dichloroethene	109		100	70-130	9	25
trans-1,2-Dichloroethene	100		95	70-130	5	25
Trichloroethene	96		90	70-130	6	25
1,2-Dichlorobenzene	99		101	70-130	2	25
1,3-Dichlorobenzene	104		104	70-130	0	25
1,4-Dichlorobenzene	102		102	70-130	0	25
Methyl tert butyl ether	87		91	70-130	4	25
p/m-Xylene	106		103	70-130	3	25
o-Xylene	104		105	70-130	1	25
cis-1,2-Dichloroethene	101		98	70-130	3	25
Dibromomethane	96		97	70-130	1	25
1,2,3-Trichloropropane	96		102	70-130	6	25
Styrene	106		106	70-130	0	25
Dichlorodifluoromethane	122		114	70-130	7	50
Acetone	69		69	70-130	0	50
Carbon disulfide	88		80	70-130	10	25
2-Butanone	82		82	70-130	0	50

RAYTHEON Batch Quality

Lab Number: L0809567

Report Date: 07/09/08

Project Name:	RAYTHEON
Project Number:	0079387

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits				
olatile Organics by MCP 8260B Asso	ciated sample(s): 03 Bate	ch: WG327797-1	WG327797-2						
4-Methyl-2-pentanone	87	85	70-130	2	50				
2-Hexanone	75	76	70-130	1	50				
Bromochloromethane	107	108	70-130	1	25				
Tetrahydrofuran	93	84	70-130	10	25				
2,2-Dichloropropane	104	98	70-130	6	50				
1,2-Dibromoethane	93	96	70-130	3	25				
1,3-Dichloropropane	95	95	70-130	0	25				
1,1,1,2-Tetrachloroethane	102	103	70-130	1	25				
Bromobenzene	99	102	70-130	3	25				
n-Butylbenzene	104	100	70-130	4	25				
sec-Butylbenzene	104	100	70-130	4	25				
tert-Butylbenzene	101	101	70-130	0	25				
o-Chlorotoluene	102	102	70-130	0	25				
p-Chlorotoluene	103	104	70-130	1	25				
1,2-Dibromo-3-chloropropane	92	95	70-130	3	50				
Hexachlorobutadiene	103	102	70-130	1	25				
Isopropylbenzene	117	113	70-130	3	25				
p-Isopropyltoluene	108	105	70-130	3	25				
Naphthalene	81	84	70-130	4	25				
n-Propylbenzene	104	101	70-130	3	25				
1,2,3-Trichlorobenzene	90	91	70-130	1	25				

Lab Number: L0809567

Report Date: 07/09/08

arameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
olatile Organics by MCP 8260B A	Associated sample(s): 03	Batch: WG327797-1	WG327797-2		
1,2,4-Trichlorobenzene	90	92	70-130	2	25
1,3,5-Trimethylbenzene	101	100	70-130	1	25
1,2,4-Trimethylbenzene	102	101	70-130	1	25
Ethyl ether	98	98	70-130	0	25
Isopropyl Ether	90	90	70-130	0	25
Ethyl-Tert-Butyl-Ether	92	93	70-130	1	25
Tertiary-Amyl Methyl Ether	86	87	70-130	1	25
1,4-Dioxane	99	98	70-130	1	50

Surrogate	LCS %Recovery Qualifier	LCSD %Recovery Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	94	91	70-130
Toluene-d8	100	101	70-130
4-Bromofluorobenzene	94	97	70-130
Dibromofluoromethane	102	99	70-130

Project Name:RAYTHEONLab Number:L0809567Project Number:0079387Report Date:07/09/08

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
Α	Absent
D	Absent
В	Absent
С	Absent

Container Information

Container ID	Container Type	Cooler	рН	Temp	Pres	Seal	Analysis
L0809567-01A	Vial HCI preserved	Α	N/A	2.9 c	Υ	Absent	MCP-8260-04
L0809567-02A	Vial HCl preserved	Α	N/A	2.9 c	Υ	Absent	MCP-8260-04
L0809567-02B	Vial HCl preserved	Α	N/A	2.9 c	Υ	Absent	MCP-8260-04
L0809567-03A	Vial HCl preserved	Α	N/A	2.9 c	Υ	Absent	MCP-8260-04
L0809567-03B	Vial HCl preserved	Α	N/A	2.9 c	Υ	Absent	MCP-8260-04
L0809567-04A	Vial HCl preserved	Α	N/A	2.9 c	Υ	Absent	-
L0809567-05A	Vial HCl preserved	Α	N/A	2.9 c	Υ	Absent	-
L0809567-06A	Vial HCl preserved	Α	N/A	2.9 c	Υ	Absent	-

Project Name:RAYTHEONLab Number:L0809567Project Number:0079387Report Date:07/09/08

GLOSSARY

Acronyms

- EPA Environmental Protection Agency.
- LCS Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
- LCSD- Laboratory Control Sample Duplicate: Refer to LCS.
- MS Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
- MSD Matrix Spike Sample Duplicate: Refer to MS.
- NA Not Applicable.
- NI Not Ignitable.
- NC Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
- ND Not detected at the reported detection limit for the sample.
- RDL Reported Detection Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
- RPD Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

The following data qualifiers have been identified for use under the CT DEP Reasonable Confidence Protocols.

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- J Estimated value. The analyte was tentatively identified; the quantitation is an estimation. (Tentatively identified compounds only.)

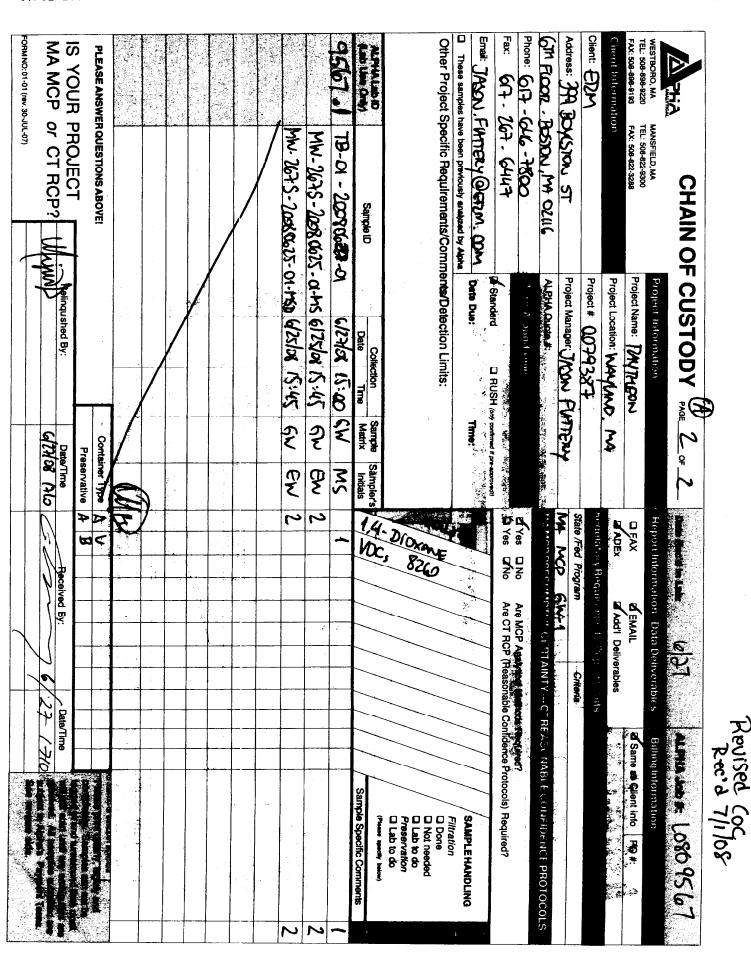
Standard Qualifiers

H - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.

Report Format: Data Usability Report

Project Name:RAYTHEONLab Number:L0809567Project Number:0079387Report Date:07/09/08

REFERENCES


Quality Assurance and Quality Control Requirements and Performance Standards for SW-846 Methods. MADEP BWSC. WSC-CAM-IIA (Revision 4), WSC-CAM-V C (Revision 2), WSC-CAM-IIIA (Revision 5). May 2004.

LIMITATION OF LIABILITIES

Alpha Woods Hole Labs performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Woods Hole Labs shall be to re-perform the work at it's own expense. In no event shall Alpha Woods Hole Labs be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Woods Hole Labs.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Page 35 01 35

																													72.	00.	1/00	, ,	
FORM NO: 01-01 (rev. 10-OCT-06)		MA MCD or	IS YOUR PROJECT	PLEASE ANSWER QUESTIONS ABOVE	26/03 D		U	M	M	W M	9567. 2 M		M	3						Other Project Speci	☐ These samples have b	TASON, FWY	+ 140. +92 - +19	9	617 FLOOR - 136	Consess Day 100	200 S	Client	# {	FAX: 508-898-91230 FAX:	=	APHA	
	fallow 1	00 11 11	OJECT]	ESTIONS ABOVE	DUP-003-20080675-01	JP-002 - 20050675-01	JUP-001 - 20080678-01	MN-269 D- 20080626-01	MN-269 Ma-20080626-01	MW-2687-2080625-01	MW-2675 - 70-80625-01	MW-266 Mb-2020625-01	MW-266 Ma- 2080625-01	MW-265M-20080625-01		Samole ID				Other Project Specific Requirements/Comments/Detection Limits	_	EMBEL JASON, FLATIBLY (& ERM. COM	٠.,	6-7K00	P 02116					FAX: 508-822-3288	RAYNHAM,NA	CHAIN OF CUSTODY	
		Relinquished By:																		nts/Detec	Car.	Date Dise	Standard	i i Arga	ALPHA Quote #:	Project Manager: JASON FUTIERY	Froject #: 0074387	WAY WAY	Droised on	Project Name: DAYTHONN	Taraya (2)	CUS	
		ed By:			6/25/08 00:00	वाःक क्षिप्रम	6/25/4 00:00	6/26/03	6/26/09	61:41 Ro/52/PI	6/25/51	6/25/08 13:40	6/25/01	G/25/28	8	Callection				tion Lim			6		ote #:	ager: JA	ERCO	W. W.		16: DA	edho:	TOD	
			L		8.8	8	878	45:50	ON:SI	16:10	15:45	13:40	13150	B 30	i i	tion				its:		,	RUSH			SON T	43	TY (MAC)	Tre C	TLON		₹ @	₽
	W171/08	D	3	Conta	A	3	P	F	A.	B	A S	EV.	₽ E	SW W	1	Sample							RUSH (only confirmed if pre			ATTERY		794		J		-	20
	an s	Date/Time	Preservative	Container Type	EW	2	SW	LR	R	NS N	æ	Ma	№	35		Sampler's							- aggregatil									of 2	Revised
	1		≯	>		1	2	2	2	2	12	12	2	2		A STEEL						404	0		20	\$	Sign	ŗ			<i>え</i>	9	
	1		7	> <	2						2						2	Dr. 8	ts.	- -			□ Yes	E Yes	WAW: 1	1	State /Fed Pn		ADEX S	DEAY	Report into		293
	1	R	L		ļ		<u> </u>								/	~	_	8	6	<u>)</u>	\	_	No No	<u>8</u>	· 448 S	3	State Fed Program	D	^		inter	Ė.	E
	1/2	ceived By:	H	-											_	_	_	_	_	_	_	_	Ą	Ą					R (Ca
	}	.Y	\vdash												/	_	_	<u></u>	\		<u> </u>	<u></u>	Are CT RCP (Reasonable Confidence Protocols) Required?	Are MCP Analytical Methods Required?		25			Add'i Deliverables	EMAII			7/1/08
	ψ															\	_	_	<u> </u>	\	_		CP (R	Analy	E 77 27	_	_		Deliver.			さ	\$
\dashv	6		_													<u> </u>	_	\			\	/	Basona	100 100 100 100 100 100 100 100 100 100			Criteria		ables	ı	l constate		
	h	P	\vdash						·							_	<u> </u>	_	\	_	<u> </u>	/	S eq	ethods.	. (3 R	'					# B		
	1710														/ /	_	_	_	<u></u>		_	//	nfiden	78GC	430				8	200	7		
			L Magazi													<u> </u>	_	\	_	_	\	\neg	æ Pro	8 4%	MABi						a de des		
															Same			\	\		<u> </u>	\forall	tocols)		€ CO			-	2	Same as Client info			<u>_</u>
es Sign															Spa Spa	1	5	P	2 & C	Filtration Done	SAM		Requi		30is				-				% 0%
									İ					ı	O O O	as apacity to	C) Lab to do	Preservation	D Not needed	3 8	MEH.		6 03		133v				3	3 *			3 3 3 3
															Sample Specific Comments			.	K		SAMPLEHANDLING				TREASONABLE CONFIDENCE PROTOCOL								<u>E</u>
							\rightarrow		_	\rightarrow		_		-1											9								